Viscosity solutions for systems of parabolic variational inequalities
Maticiuc, Lucian ; Pardoux, Etienne ; Răşcanu, Aurel ; Zălinescu, Adrian
Bernoulli, Tome 16 (2010) no. 1, p. 258-273 / Harvested from Project Euclid
In this paper, we first define the notion of viscosity solution for the following system of partial differential equations involving a subdifferential operator: ¶ \[\catcode`\*=4\cases{\dfrac{\partial u}{\partial t}(t,x )+\mathcal{L}_{t}u(t,x )+f (t,x,u (t,x ))\in\partial\varphi (u (t,x)),*\quad $t\in[ 0,T) ,x\in\mathbb{R}^{d}$,\cr u( T,x ) =h(x),*\quad $x\in\mathbb{R}^{d}$,}\] ¶ where ∂φ is the subdifferential operator of the proper convex lower semicontinuous function φ : ℝk→(−∞, +∞] and $\mathcal{L}_{t}$ is a second differential operator given by $\mathcal{L}_{t}v_{i}(x)=\frac{1}{2}\operatorname{Tr}[\sigma(t,x)\sigma^{\ast}(t,x)\mathrm{D}^{2}v_{i}(x)]+\langle b(t,x),\nabla v_{i}(x)\rangle$ , $i\in\overline{1,k}$ . ¶ We prove the uniqueness of the viscosity solution and then, via a stochastic approach, prove the existence of a viscosity solution u : [0, T]×ℝd→ℝk of the above parabolic variational inequality.
Publié le : 2010-02-15
Classification:  Feynman–Kac formula,  systems of variational inequalities,  viscosity solutions
@article{1265984711,
     author = {Maticiuc, Lucian and Pardoux, Etienne and R\u a\c scanu, Aurel and Z\u alinescu, Adrian},
     title = {Viscosity solutions for systems of parabolic variational inequalities},
     journal = {Bernoulli},
     volume = {16},
     number = {1},
     year = {2010},
     pages = { 258-273},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1265984711}
}
Maticiuc, Lucian; Pardoux, Etienne; Răşcanu, Aurel; Zălinescu, Adrian. Viscosity solutions for systems of parabolic variational inequalities. Bernoulli, Tome 16 (2010) no. 1, pp.  258-273. http://gdmltest.u-ga.fr/item/1265984711/