Spectral properties of parabolic layer potentials and transmission boundary problems in nonsmooth domains
Hofmann, Steve ; Lewis, John ; Mitrea, Marius
Illinois J. Math., Tome 47 (2003) no. 4, p. 1345-1361 / Harvested from Project Euclid
We study the invertibility of $\lambda I+K$ in $L^p(\partial\Omega\times\mathbf{R})$, for $p$ near $2$ and $\lambda\in\mathbf{R}$, $|\lambda|\geq\sfrac12$, where $K$ is the caloric double layer potential operator and $\Omega$ is a Lipschitz domain. Applications to transmission boundary value problems are also presented.
Publié le : 2003-10-15
Classification:  35K10,  35P05,  42B20,  45B05
@article{1258138108,
     author = {Hofmann, Steve and Lewis, John and Mitrea, Marius},
     title = {Spectral properties of parabolic layer potentials and transmission boundary problems in nonsmooth domains},
     journal = {Illinois J. Math.},
     volume = {47},
     number = {4},
     year = {2003},
     pages = { 1345-1361},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138108}
}
Hofmann, Steve; Lewis, John; Mitrea, Marius. Spectral properties of parabolic layer potentials and transmission boundary problems in nonsmooth domains. Illinois J. Math., Tome 47 (2003) no. 4, pp.  1345-1361. http://gdmltest.u-ga.fr/item/1258138108/