Approximations of generalized Cohen-Macaulay modules
Herzog, Jürgen ; Takayama, Yukihide
Illinois J. Math., Tome 47 (2003) no. 4, p. 1287-1302 / Harvested from Project Euclid
It is shown that any generalized Cohen-Macaulay module $M$ can be approximated by a maximal generalized Cohen-Macaulay module $X$ up to a module of finite projective dimension, and such that the local cohomology modules of $M$ and $X$ coincide for all cohomological degrees different from the dimensions of the two modules. By a theorem of Migliore there exist graded generalized Cohen-Macaulay rings which, up to a shift, have predescribed local cohomology modules. Bounds for this shift are given in terms of homological data.
Publié le : 2003-10-15
Classification:  13C14,  13D02,  13D07,  13D45,  13H10
@article{1258138105,
     author = {Herzog, J\"urgen and Takayama, Yukihide},
     title = {Approximations of generalized Cohen-Macaulay modules},
     journal = {Illinois J. Math.},
     volume = {47},
     number = {4},
     year = {2003},
     pages = { 1287-1302},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138105}
}
Herzog, Jürgen; Takayama, Yukihide. Approximations of generalized Cohen-Macaulay modules. Illinois J. Math., Tome 47 (2003) no. 4, pp.  1287-1302. http://gdmltest.u-ga.fr/item/1258138105/