On the geometry of higher duals of a Banach space
Rao, T. S. S. R. K.
Illinois J. Math., Tome 45 (2001) no. 4, p. 1389-1392 / Harvested from Project Euclid
In this paper we study the geometry of higher duals of a Banach space using techniques from the theory of $M$-ideals. We show that any Banach space that is an $M$-ideal in its bidual is an $M$-ideal in all duals of even order. As a consequence of this result, we show that continuous linear functionals on such spaces have unique norm preserving extensions to all duals of even order.
Publié le : 2001-10-15
Classification:  46B10,  46B04,  46B20
@article{1258138074,
     author = {Rao, T. S. S. R. K.},
     title = {On the geometry of higher duals of a Banach space},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 1389-1392},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138074}
}
Rao, T. S. S. R. K. On the geometry of higher duals of a Banach space. Illinois J. Math., Tome 45 (2001) no. 4, pp.  1389-1392. http://gdmltest.u-ga.fr/item/1258138074/