Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant
Xia, Changyu
Illinois J. Math., Tome 45 (2001) no. 4, p. 1253-1259 / Harvested from Project Euclid
We prove that for any given integer $n\geq 2$ and $q\in [1, n)$ there exists a constant $\epsilon= \epsilon(n,q)>0$ such that any $n$-dimensional complete Riemannian manifold with nonnegative Ricci curvature, in which the Sobolev inequality ¶ \[ \left(\int_M|f|^{\frac {nq}{n-q}}\,dv\right)^{\frac{n-q}{nq}}\leq (K(n,q)+\epsilon)\left(\int_M|\nabla f|^q \,dv\right)^{\sfrac{1}{q}}, \,\,\forall f\in C_0^{\infty}(M) \] ¶ holds with $K(n,q)$ the optimal constant of this inequality in the $n$-dimensional Euclidean space $R^n$, is diffeomorphic to~$R^n$.
Publié le : 2001-10-15
Classification:  53C21,  31C12
@article{1258138064,
     author = {Xia, Changyu},
     title = {Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 1253-1259},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138064}
}
Xia, Changyu. Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant. Illinois J. Math., Tome 45 (2001) no. 4, pp.  1253-1259. http://gdmltest.u-ga.fr/item/1258138064/