Comparison theorems for eigenvalues of one-dimensional Schrödinger operators
Huang, Min-Jei
J. Math. Kyoto Univ., Tome 43 (2003) no. 4, p. 465-474 / Harvested from Project Euclid
The Schrödinger operator $H = -d^{2}/dx^{2}+V (x)$ on an interval $[0, a]$ with Dirichlet or Neumann boundary conditions has discrete spectrum $E_{1}[V] < E_{2}[V] < E_{3}[V] < \cdots$, for bounded $V$. In this paper, we apply the perturbation theory of discrete eigenvalues to obtain upper bounds for $\sum_{j=1}^{k} E_{j}[V]$, where $k$ is any positive integer. Our results include the following: ¶ (i) $\sum_{j=1}^{k} E_{j}[V]\leq \sum_{j=1}^{k} E_{j}[V_{s}]$, where $V_{s}(x) = [V (x)+V (a-x)]/2$, with equality if and only if $V$ is symmetric about $x = a/2$. ¶ (ii) If $V$ is convex, then the Dirichlet eigenvalues satisfy \[ \sum_{j=1}^{k} E_{j}[V]\leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a}\int _{0}^{a}V (x)dx \] with equality if and only if V is constant. ¶ (iii) If $V$ is concave, then the Neumann eigenvalues satisfy \[ \sum_{j=1}^{k} E_{j}[V]\leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a}\int _{0}^{a}V (x)dx \] with equality if and only if $V$ is constant.
Publié le : 2003-05-15
Classification:  34L15,  34L40,  47E05
@article{1250283690,
     author = {Huang, Min-Jei},
     title = {Comparison theorems for eigenvalues of one-dimensional Schr\"odinger operators},
     journal = {J. Math. Kyoto Univ.},
     volume = {43},
     number = {4},
     year = {2003},
     pages = { 465-474},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283690}
}
Huang, Min-Jei. Comparison theorems for eigenvalues of one-dimensional Schrödinger operators. J. Math. Kyoto Univ., Tome 43 (2003) no. 4, pp.  465-474. http://gdmltest.u-ga.fr/item/1250283690/