Representation functions of bases for binary linear forms
Nathanson, Melvyn B
Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, p. 341-350 / Harvested from Project Euclid
Let $F(x_1,\ldots,x_m) = u_1 x_1 + \cdots + u_mx_m$ be a linear form with nonzero, relatively prime integer coefficients $u_1, \ldots, u_m$. For any set $A$ of integers, let $F(A)=\{F(a_1,\ldots,a_m): a_i \in A for i=1,\ldots,m\}.$ The {\it representation function} associated with the form $F$ is $$ R_{A,F}(n) = \card ( \{ (a_1,\ldots,a_m)\in A^m: F(a_1,\ldots, a_m) = n \} ). $$ The set $A$ is a {\it basis with respect to $F$ for almost all integers} if the set ${\bf Z} \setminus F(A)$ has asymptotic density zero. Equivalently, the representation function of a basis for almost all integers is a function $f:{\bf Z} \rightarrow {\bf N_0}\cup\{\infty\}$ such that $f^{-1}(0)$ has density zero. Given such a function, the inverse problem for bases is to construct a set $A$ whose representation function is $f$. In this paper the inverse problem is solved for binary linear forms. for binary linear forms.
Publié le : 2007-09-15
Classification:  additive bases,  representation functions,  linear forms,  Erdős-Turán conjecture,  Sidon sets,  $B_h[g]$ and $B_F[g]$ sets,  11B34,  11B13,  11B75,  11A67,  11D04,  11D72
@article{1229619658,
     author = {Nathanson, Melvyn B},
     title = {Representation functions of bases for binary linear forms},
     journal = {Funct. Approx. Comment. Math.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 341-350},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229619658}
}
Nathanson, Melvyn B. Representation functions of bases for binary linear forms. Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, pp.  341-350. http://gdmltest.u-ga.fr/item/1229619658/