On a Kakeya-type problem
Freiman, Gregory A. ; Stanchescu, Yonutz V.
Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, p. 131-148 / Harvested from Project Euclid
Let $A$ be a finite subset of an abelian group $G$. For every element $b_i$ of the sumset $2A = \{b_0, b_1, ...,b_{|2A|-1}\}$ we denote by $D_i = \{a-a': a, a'\in A; a + a' = b_i\}$ and $r_i = |\{(a,a'): a + a' = b_i; a, a' \in A \}|$. After an eventual reordering of $2A$, we may assume that $r_0 \geq r_1 \geq ... \geq r_{|2A|-1}.$ For every $1 \le s \le |2A|$ we define $R_s(A)=|D_0 \cup D_1 \cup ... \cup D_{s-1}|$ and $R_s(k) = \max \{R_s(A): A \subseteq G, |A| = k\}.$ Bourgain and Katz and Tao obtained an estimate of $R_s(k)$ assuming $s$ being of order $k$. In this note we find the {\it exact value } of $R_s(k)$ in cases $s = 1$, $s = 2$ and $s = 3$. The case $s = 3$ appeared to be not simple. The structure of {\it extremal sets} led us to sets isomorphic to planar sets having a rather unexpected form of a perfect hexagon. The proof suggests the way of dealing with the general case $s \ge 4$.
Publié le : 2007-01-15
Classification:  inverse additive number theory,  Kakeya problem,  11P70,  11B75
@article{1229618746,
     author = {Freiman, Gregory A. and Stanchescu, Yonutz V.},
     title = {On a Kakeya-type problem},
     journal = {Funct. Approx. Comment. Math.},
     volume = {37},
     number = {1},
     year = {2007},
     pages = { 131-148},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1229618746}
}
Freiman, Gregory A.; Stanchescu, Yonutz V. On a Kakeya-type problem. Funct. Approx. Comment. Math., Tome 37 (2007) no. 1, pp.  131-148. http://gdmltest.u-ga.fr/item/1229618746/