Preconditioned GMRES Methods for Least Squares Problems
Ito, Tokushi ; Hayami, Ken
Japan J. Indust. Appl. Math., Tome 25 (2008) no. 1, p. 185-207 / Harvested from Project Euclid
For least squares problems of minimizing $\|\boldsymbol{b}-A\boldsymbol{x}\|_2$ where $A$ is a large sparse $m\times n$ ($m\ge n$) matrix, the common method is to apply the conjugate gradient method to the normal equation $A^{\mathrm{T}} A\boldsymbol{x}=A^{\mathrm{T}} \boldsymbol{b}$. However, the condition number of $A^{\mathrm{T}} A$ is square of that of $A$, and convergence becomes problematic for severely ill-conditioned problems even with preconditioning. In this paper, we propose two methods for applying the GMRES method to the least squares problem by using an $n\times m$ matrix $B$. We give the necessary and sufficient condition that $B$ should satisfy in order that the proposed methods give a least squares solution. Then, for implementations for $B$, we propose an incomplete QR decomposition IMGS($l$). Numerical experiments showed that the simplest case $l=0$ gives the best results, and converges faster than previous methods for severely ill-conditioned problems. The preconditioner IMGS(0) is equivalent to the case $B=(\diag (A^{\mathrm{T}} A))^{-1} A^{\mathrm{T}}$, so $(\diag (A^{\mathrm{T}} A))^{-1} A^{\mathrm{T}}$ was the best preconditioner among IMGS($l$) and Jennings' IMGS($\tau$). On the other hand, CG-IMGS(0) was the fastest for well-conditioned problems.
Publié le : 2008-06-15
Classification:  least squares problems,  GMRES,  preconditioning,  incomplete QR decomposition,  singular systems
@article{1215118762,
     author = {Ito, Tokushi and Hayami, Ken},
     title = {Preconditioned GMRES Methods for Least Squares Problems},
     journal = {Japan J. Indust. Appl. Math.},
     volume = {25},
     number = {1},
     year = {2008},
     pages = { 185-207},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1215118762}
}
Ito, Tokushi; Hayami, Ken. Preconditioned GMRES Methods for Least Squares Problems. Japan J. Indust. Appl. Math., Tome 25 (2008) no. 1, pp.  185-207. http://gdmltest.u-ga.fr/item/1215118762/