A four-point problem for second-order differential systems
Calábek, Pavel
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Volume 33 (1994), p. 7-15 / Harvested from Czech Digital Mathematics Library
Published online : 1994-01-01
Classification:  34B10,  34B15
@article{120301,
     author = {Pavel Cal\'abek},
     title = {A four-point problem for second-order differential systems},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {33},
     year = {1994},
     pages = {7-15},
     zbl = {0845.34030},
     mrnumber = {1385740},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120301}
}
Calábek, Pavel. A four-point problem for second-order differential systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Volume 33 (1994) pp. 7-15. http://gdmltest.u-ga.fr/item/120301/

Granas A.; Guenther R.; Lee J. Some existence principles in the the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl., (9) 70 (1991), no 2, 153-196. (1991) | MR 1103033

Granas A.; Guenther R.; Lee J. Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math., 244, Warszaw, 1985. (1985) | MR 0808227 | Zbl 0615.34010

Andres J. A four-point boundary value problem for the second-order ordinary differential equations, Arch. Math., Basel, 53 (1989), 384-389. (1989) | MR 1016002 | Zbl 0667.34024

Andres J.; Vlček V. On four-point regular BVPs for second-order quasilinear ODEs, Acta UP Olomucensis, Fac. rer. nat., 105 (1992), 37-44. (1992) | MR 1212604

Rachůnková I. A four point problem for differential equations of the second order, Arch. Math., Brno, 25 (1989), 175-184. (1989) | MR 1188062 | Zbl 0715.34033

Rachůnková I. Existence and uniqueness of solutions of four-point boundary value problems for 2nd order differential equations, Czech. Math. J., Praha, 39 (1989), 692-700. (1989) | MR 1018005

Šeda V. A correct problem at a resonance, Diff. and Int. Eq., 2 (1989), 389-396. (1989) | MR 0996746