Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term
Andres, Ján
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988), p. 201-210 / Harvested from Czech Digital Mathematics Library
Publié le : 1988-01-01
Classification:  34C10,  34E05
@article{120193,
     author = {J\'an Andres},
     title = {Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     volume = {27},
     year = {1988},
     pages = {201-210},
     zbl = {0701.34070},
     mrnumber = {1039890},
     language = {en},
     url = {http://dml.mathdoc.fr/item/120193}
}
Andres, Ján. Asymptotic properties of solutions of a certain third-order differential equation with an oscillatory restoring term. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 27 (1988) pp. 201-210. http://gdmltest.u-ga.fr/item/120193/

Swick K. E. Asymptotic behavior of the solutions of certain third order differential equations, SIAM J. Appl. Math. 19, 1, 1970, 96-102. (1970) | MR 0267212 | Zbl 0212.11403

Yoshizawa T. Stability theory by Liapunov's second method, Math. Soc. Japan, Tokyo 1966. (1966) | MR 0208086

Andres J. On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order, Čas.pěst.mat. 3, 1986, 225-229. (1986) | MR 0853786

Voráček J. Über eine nichtlineare Differentialgleichung dritter Ordnung, Czech. Math. J. 20, 95, 1970, 207-219. (1970) | MR 0259237

Coppel W. A. Stability and asymptotic behavior of differential equations, D.C. Heath, Boston 1965. (1965) | MR 0190463 | Zbl 0154.09301

Barbalat I. Systèmes ďéquations différencielles ďoscillations non linéaires, Rev. Math. Pures Appl. 4, 2, 1959, 267-270. (1959) | MR 0111896

Andres O. Boundedness of solutions of the third order differential equation with the oscillatory restoring and forcing terms, Czech. Math. J., 36, 1, 1986, 1-6. (1986) | MR 0822859

Bakaev; Yu. N. Synchronization properties of the automatic control phase system of the third order, (in Russian). Radiotekh. Elektron. 10, 6, 1965, 1083-1087. (1965)

Andres O.; Štrunc M. Lagrange-like stability of local cycles to a certain forced phase-locked loop described by the third-order differential equation, To appear in Rev. Roum. Sci.Techn. 32, 2, 1987, 219-223. (1987)