Semilinear elliptic problems with nonlinearities depending on the derivative
Arcoya, David ; del Toro, Naira
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003), p. 413-426 / Harvested from Czech Digital Mathematics Library

We deal with the boundary value problem $$ \alignat2 -\Delta u(x) & = \lambda _{1}u(x)+g(\nabla u(x))+h(x), \quad && x\in \Omega \ u(x) & = 0, && x\in \partial \Omega \endalignat $$ where $\Omega \subset \Bbb R^N$ is an smooth bounded domain, $\lambda _{1}$ is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on $\Omega $, $h\in L^{\max \{2,N/2\}}(\Omega )$ and $g:\Bbb R^N\longrightarrow \Bbb R$ is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that $g$ satisfies certain conditions on the origin and at infinity.

Publié le : 2003-01-01
Classification:  35B32,  35B34,  35J25,  35J60,  35J65,  47J15
@article{119398,
     author = {David Arcoya and Naira del Toro},
     title = {Semilinear elliptic problems with nonlinearities depending on the derivative},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {44},
     year = {2003},
     pages = {413-426},
     zbl = {1105.35038},
     mrnumber = {2025810},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119398}
}
Arcoya, David; del Toro, Naira. Semilinear elliptic problems with nonlinearities depending on the derivative. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) pp. 413-426. http://gdmltest.u-ga.fr/item/119398/

Ambrosetti A.; Hess P. Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (2) (1980), 411-422. (1980) | MR 0563992 | Zbl 0433.35026

Almira J.M.; Del Toro N. Some remarks on certains semilinear problems with nonlinearities depending on the derivative, Electron. J. Differential Equations 2003 (2003), 18 1-11. (2003)

Anane A.; Chakrone O.; Gossez J.P. Spectre d'ordre supérieur et problèmes de non-résonance, C.R. Acad. Sci. Paris 325 Série I (1997), 33-36. (1997) | MR 1461393 | Zbl 0880.35083

Arcoya D.; Gámez J.L. Bifurcation theory and related problems: anti-maximum principle and resonance, Comm. Partial Differential Equations 26 9-10 (2001), 1879-1911. (2001) | MR 1865948 | Zbl 1086.35010

Brezis H.; Kato T. Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. IX, 58 (1979), 137-151. (1979) | MR 0539217 | Zbl 0408.35025

Ca Nada A. Nonselfadjoint semilinear elliptic boundary value problems, Ann. Mat. Pura Appl. CXLVIII (1987), 237-250. (1987) | MR 0932766

Ca Nada A.; Drábek P. On semilinear problems with nonlinearities depending only on derivatives SIAM J. Math. Anal., 27 (1996), 543-557. (1996) | MR 1377488

Coifman R.R.; Fefferman C.L. Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. (1974) | MR 0358205 | Zbl 0291.44007

Drábek P.; Girg P.; Roca F. Remarks on the range properties of certain semilinear problems of Landesman-Lazer type, J. Math. Anal. Appl. 257 (2001), 131-140. (2001) | MR 1824670 | Zbl 0993.34012

Drábek P.; Nicolosi F. Semilinear boundary value problems at resonance with general nonlinearities, Differential Integral Equations 5 -2 (1992), 339-355. (1992) | MR 1148221

De Figuereido D.G.; Lions P.L.; Nussbaum R.D. A priori estimates and existence of positive solutions for semi-linear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63. (1982) | MR 0664341

Garofalo N.; Lin F.H. Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. XL (1987), 347-366. | MR 0882069 | Zbl 0674.35007

Gidas B.; Ni W.M.; Nirenberg L. Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. (1979) | MR 0544879 | Zbl 0425.35020

Gilbarg D.; Trudinger N. Elliptic Partial Differential Equations of Second Order, Springer, 1983. | MR 0737190 | Zbl 1042.35002

Girg P. Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative, Electron. J. Differential Equations 63 (2000), 1-28. (2000) | MR 1799793 | Zbl 0974.34018

Habets P.; Sanchez L. A two-point problem with nonlinearity depending only on the derivative, SIAM J. Math. Anal. 28 (1997), 1205-1211. (1997) | MR 1466677 | Zbl 0886.34015

Kannan R.; Nagle R.K.; Pothoven K.L. Remarks on the existence of solutions of $x''+x+\arctan (x')=p(t)$; $x(0)=x(\pi)=0$, Nonlinear Anal. 22 (1994), 793-796. (1994) | MR 1270170 | Zbl 0802.34021

Landesman E.M.; Lazer A.C. Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. (1970) | MR 0267269 | Zbl 0193.39203

Leray J.; Schauder J. Topologie et équations fonctionelles, Ann. Scient. Éc. Norm. Sup. 51 (1934), 45-78. (1934) | MR 1509338

Mawhin J. Some remarks on semilinear problems at resonance where the nonlinearity depends only on the derivatives, Acta Math. Inform. Univ. Ostraviensis 2 (1994), 61-69. (1994) | MR 1309064 | Zbl 0853.34021

Mawhin J.; Schmitt K. Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results Math. 14 (1988), 138-146. (1988) | MR 0956010 | Zbl 0780.35043

Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. (1972) | MR 0293384 | Zbl 0236.26016

Nagle R.K.; Pothoven K.; Singkofer K. Nonlinear elliptic equations at resonance where the nonlinearity depends essentially on the derivatives J. Diff. Equations, 38 (1980), 210-225. (1980) | MR 0597801

Nussbaum R. Uniqueness and nonuniqueness for periodics solutions of $x'(t)=-g(x(t-1))$, J. Differential Equations 34 (1979), 24-54. (1979) | MR 0549582

Rabinowitz P.H. On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475. (1973) | MR 0328705 | Zbl 0272.35017

Struwe M. Variational Methods. Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1990. | MR 1078018