Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF
Herrlich, Horst
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002), p. 319-333 / Harvested from Czech Digital Mathematics Library

The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text{\bf CC}(\Bbb R)$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text{\bf CC}(\Bbb R)$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text{\bf CC}(\Bbb R)$ fails and $\text{\bf BPI}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text{\bf AC}$ holds. 5. Lindelöf spaces are countably summable iff $\text{\bf CC}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text{\bf CC}$ holds or $\text{\bf CC}(\Bbb R)$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text{\bf CC}(\Bbb R)$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text{\bf CC}(\Bbb R)$ fails.

Publié le : 2002-01-01
Classification:  03E25,  54A35,  54B10,  54D20,  54D30
@article{119322,
     author = {Horst Herrlich},
     title = {Products of Lindel\"of $T\_2$-spaces are Lindel\"of -- in some models of ZF},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {43},
     year = {2002},
     pages = {319-333},
     zbl = {1072.03029},
     mrnumber = {1922130},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119322}
}
Herrlich, Horst. Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 319-333. http://gdmltest.u-ga.fr/item/119322/

Bentley H.L.; Herrlich H. Countable choice and pseudometric spaces, Topology Appl. 85 (1998), 153-164. (1998) | MR 1617460 | Zbl 0922.03068

Börger R. On powers of a Lindelöf space, preprint, November 2001.

Brunner N. $\sigma$-kompakte Räume, Manuscripta Math. 38 (1982), 375-379. (1982) | MR 0667922 | Zbl 0504.54004

Brunner N. Lindelöf Räume und Auswahlaxiom, Anz. Österreich. Akad. der Wiss. Math. Nat. Kl. 119 (1982), 161-165. (1982) | MR 0728812

Brunner N. Spaces of Urelements, II, Rend. Sem. Mat. Univ. Padova 77 (1987), 305-315. (1987) | MR 0904626 | Zbl 0668.54014

Church A. Alternatives to Zermelo's assumption, Trans. Amer. Math. Soc. 29 (1927), 178-208. (1927) | MR 1501383

Engelking R. General Topology, Heldermann Verlag, Berlin, 1989. | MR 1039321 | Zbl 0684.54001

Feferman S.; Levy A. Independence results in set theory by Cohen's method, Notices Amer. Math. Soc. 10 (1963), 593. (1963)

Gitik M. All uncountable cardinals can be singular, Israel J. Math. 35 (1980), 61-88. (1980) | MR 0576462 | Zbl 0439.03036

Good C.; Tree I.J. Continuing horrors of topology without choice, Topology Appl. 63 (1995), 79-90. (1995) | MR 1328621 | Zbl 0822.54001

Gutierres G. Sequential topological conditions without AC, preprint, 2001.

Herrlich H. Compactness and the axiom of choice, Appl. Categ. Structures 3 (1995), 1-15. (1995) | MR 1393958

Herrlich H.; Keremedis K. On countable products of finite Hausdorff spaces, Math. Logic Quart. 46 (2000), 537-542. (2000) | MR 1791548 | Zbl 0959.03033

Herrlich H.; Strecker G.E. When is $\Bbb N$ Lindelöf?, Comment. Math. Univ. Carolinae 38 (1997), 553-556. (1997) | MR 1485075 | Zbl 0938.54008

Howard P.; Rubin J.E. Consequences of the Axiom of Choice, AMS Math. Surveys and Monographs 59 AMS, Providence, RI, 1998. | MR 1637107 | Zbl 0947.03001

Jech T.J. The Axiom of Choice, North-Holland, Amsterdam, 1973. | MR 0396271 | Zbl 0259.02052

Kelley J. The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) | MR 0039982 | Zbl 0039.28202

Keremedis K. Disasters in topology without the axiom of choice, Arch. Math. Logic, 2000, to appear. | MR 1867681 | Zbl 1027.03040

Keremedis K. Countable disjoint unions in topology and some weak forms of the axiom of choice, Arch. Math. Logic, submitted.

Keremedis K.; Tachtsis E. On Lindelöf metric spaces and weak forms of the axiom of choice, Math. Logic Quart. 46 (2000), 35-44. (2000) | MR 1736648 | Zbl 0952.03060

Lindelöf E. Sur quelques points de la théorie des ensembles, C.R. Acad. Paris 137 (1903), 697-700. (1903)

Mycielski J.; Steinhaus H. A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 1-3. (1962) | MR 0140430 | Zbl 0106.00804

Rhineghost Y.T. The naturals are Lindelöf iff Ascoli holds, Categorical Perspectives (eds. J. Koslowski and A. Melton), Birkhäuser, 2001. | MR 1827669 | Zbl 0983.03039

Rubin H.; Scott D. Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389. (1954)

Sageev G. An independence result concerning the axiom of choice, Annals Math. Logic 8 (1975), 1-184. (1975) | MR 0366668 | Zbl 0306.02060

Specker E. Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom), Z. Math. Logik Grundlagen Math. 3 (1957), 173-210. (1957) | MR 0099297 | Zbl 0079.07605

Van Douwen E.K. Horrors of topology without AC: a nonnormal orderable space, Proc. Amer. Math. Soc. 95 (1985), 101-105. (1985) | MR 0796455 | Zbl 0574.03039