The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text{\bf CC}(\Bbb R)$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text{\bf CC}(\Bbb R)$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text{\bf CC}(\Bbb R)$ fails and $\text{\bf BPI}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text{\bf AC}$ holds. 5. Lindelöf spaces are countably summable iff $\text{\bf CC}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text{\bf CC}$ holds or $\text{\bf CC}(\Bbb R)$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text{\bf CC}(\Bbb R)$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text{\bf CC}(\Bbb R)$ fails.
@article{119322, author = {Horst Herrlich}, title = {Products of Lindel\"of $T\_2$-spaces are Lindel\"of -- in some models of ZF}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {43}, year = {2002}, pages = {319-333}, zbl = {1072.03029}, mrnumber = {1922130}, language = {en}, url = {http://dml.mathdoc.fr/item/119322} }
Herrlich, Horst. Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) pp. 319-333. http://gdmltest.u-ga.fr/item/119322/
Countable choice and pseudometric spaces, Topology Appl. 85 (1998), 153-164. (1998) | MR 1617460 | Zbl 0922.03068
On powers of a Lindelöf space, preprint, November 2001.
$\sigma$-kompakte Räume, Manuscripta Math. 38 (1982), 375-379. (1982) | MR 0667922 | Zbl 0504.54004
Lindelöf Räume und Auswahlaxiom, Anz. Österreich. Akad. der Wiss. Math. Nat. Kl. 119 (1982), 161-165. (1982) | MR 0728812
Spaces of Urelements, II, Rend. Sem. Mat. Univ. Padova 77 (1987), 305-315. (1987) | MR 0904626 | Zbl 0668.54014
Alternatives to Zermelo's assumption, Trans. Amer. Math. Soc. 29 (1927), 178-208. (1927) | MR 1501383
General Topology, Heldermann Verlag, Berlin, 1989. | MR 1039321 | Zbl 0684.54001
Independence results in set theory by Cohen's method, Notices Amer. Math. Soc. 10 (1963), 593. (1963)
All uncountable cardinals can be singular, Israel J. Math. 35 (1980), 61-88. (1980) | MR 0576462 | Zbl 0439.03036
Continuing horrors of topology without choice, Topology Appl. 63 (1995), 79-90. (1995) | MR 1328621 | Zbl 0822.54001
Sequential topological conditions without AC, preprint, 2001.
Compactness and the axiom of choice, Appl. Categ. Structures 3 (1995), 1-15. (1995) | MR 1393958
On countable products of finite Hausdorff spaces, Math. Logic Quart. 46 (2000), 537-542. (2000) | MR 1791548 | Zbl 0959.03033
When is $\Bbb N$ Lindelöf?, Comment. Math. Univ. Carolinae 38 (1997), 553-556. (1997) | MR 1485075 | Zbl 0938.54008
Consequences of the Axiom of Choice, AMS Math. Surveys and Monographs 59 AMS, Providence, RI, 1998. | MR 1637107 | Zbl 0947.03001
The Axiom of Choice, North-Holland, Amsterdam, 1973. | MR 0396271 | Zbl 0259.02052
The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) | MR 0039982 | Zbl 0039.28202
Disasters in topology without the axiom of choice, Arch. Math. Logic, 2000, to appear. | MR 1867681 | Zbl 1027.03040
Countable disjoint unions in topology and some weak forms of the axiom of choice, Arch. Math. Logic, submitted.
On Lindelöf metric spaces and weak forms of the axiom of choice, Math. Logic Quart. 46 (2000), 35-44. (2000) | MR 1736648 | Zbl 0952.03060
Sur quelques points de la théorie des ensembles, C.R. Acad. Paris 137 (1903), 697-700. (1903)
A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 1-3. (1962) | MR 0140430 | Zbl 0106.00804
The naturals are Lindelöf iff Ascoli holds, Categorical Perspectives (eds. J. Koslowski and A. Melton), Birkhäuser, 2001. | MR 1827669 | Zbl 0983.03039
Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389. (1954)
An independence result concerning the axiom of choice, Annals Math. Logic 8 (1975), 1-184. (1975) | MR 0366668 | Zbl 0306.02060
Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom), Z. Math. Logik Grundlagen Math. 3 (1957), 173-210. (1957) | MR 0099297 | Zbl 0079.07605
Horrors of topology without AC: a nonnormal orderable space, Proc. Amer. Math. Soc. 95 (1985), 101-105. (1985) | MR 0796455 | Zbl 0574.03039