Non-isomorphism of some algebras of holomorphic functions
Nawrocki, M.
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 539-544 / Harvested from Project Euclid
Suppose that $\mathcal X$ is a family of spaces of holomorphic functions such that each $X=X(D) \in \mathcal X$ can be defined on a domain $D$ belonging to some class $\mathcal D$ of domains. Then for any two concrete domains $D_1$ and $D_2 \in \mathcal D$ and $X \in \mathcal X$ one can ask the following natural question if corresponding spaces $X(D_1)$ and $X(D_2)$ are isomorphic as topological vector spaces. Similarly, for a fixed $D \in \mathcal D$ and two different spaces $X_1, X_2 \in \mathcal X$ one can consider the existence of an isomorphism between $X_1(D)$ and $X_2(D)$. We answer these questions when $\mathcal X$ consists of Hardy $N^p_*(D)$, maximal Hardy $MN^p_*(D)$, Bergman ${\mathbb N}^p(D)$, and Lumer's Hardy $LN^p_*(D)$ algebras, $p \geq 1$, and $\mathcal D = \{\mathbb B_n, \mathbb U^n, n \in \mathbb N\}$ is the family of the unit balls and the unit polydiscs in ${C}^n$.
Publié le : 2007-09-14
Classification:  Nevanlinna class,  Smirnov class,  Hardy algebra,  Bergman algebra,  Fréchet envelope,  nuclear power series spaces,  32A22,  32A35,  46A06,  32A05,  46A12
@article{1190994216,
     author = {Nawrocki, M.},
     title = {Non-isomorphism of some algebras of holomorphic functions},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 539-544},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190994216}
}
Nawrocki, M. Non-isomorphism of some algebras of holomorphic functions. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  539-544. http://gdmltest.u-ga.fr/item/1190994216/