Sets of determination for solutions of the Helmholtz equation
Ranošová, Jarmila
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 309-328 / Harvested from Czech Digital Mathematics Library

Let $\alpha > 0$, $\lambda = (2\alpha)^{-1/2}$, $S^{n-1}$ be the $(n-1)$-dimensional unit sphere, $\sigma$ be the surface measure on $S^{n-1}$ and $h(x) = \int_{S^{n-1}} e^{\lambda\langle x,y\rangle }\,d\sigma(y)$. We characterize all subsets $M$ of $\Bbb R^n $ such that $$ \inf\limits_{x\in \Bbb R^n}{u(x)\over h(x)} = \inf\limits_{x\in M}{u(x)\over h(x)} $$ for every positive solution $u$ of the Helmholtz equation on $\Bbb R^n$. A closely related problem of representing functions of $L_1(S^{n-1})$ as sums of blocks of the form $ e^{\lambda\langle x_k,.\rangle }/h(x_k)$ corresponding to points of $M$ is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.

Publié le : 1997-01-01
Classification:  31B10,  35J05
@article{118929,
     author = {Jarmila Rano\v sov\'a},
     title = {Sets of determination for solutions of the Helmholtz equation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {309-328},
     zbl = {0887.35035},
     mrnumber = {1455498},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118929}
}
Ranošová, Jarmila. Sets of determination for solutions of the Helmholtz equation. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 309-328. http://gdmltest.u-ga.fr/item/118929/

Aikawa H. Sets of determination for harmonic functions in an NTA domains, J. Math. Soc. Japan, to appear. | MR 1376083

Bauer H. Harmonische Räume und ihre Potentialtheorie, Springer-Verlag Berlin-Heidelberg-New York (1966). (1966) | MR 0210916 | Zbl 0142.38402

Bonsall F.F. Decomposition of functions as sums of elementary functions, Quart J. Math. Oxford (2) 37 (1986), 129-136. (1986) | MR 0841422

Bonsall F.F. Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 441-477. (1987) | MR 0908454 | Zbl 0658.31001

Bonsall F.F. Some dual aspects of the Poisson kernel, Proc. Edinburgh Math. Soc. 33 (1990), 207-232. (1990) | MR 1057750 | Zbl 0704.31001

Caffarelli L.A.; Littman W. Representation formulas for solutions to $\Delta u - u = 0$ in $\Bbb R^n$, Studies in Partial Differential Equations, Ed. W. Littman, MAA Studies in Mathematics 23, MAA (1982). (1982) | MR 0716508

Gardiner S.J. Sets of determination for harmonic function, Trans. Amer. Math. Soc. 338 (1993), 233-243. (1993) | MR 1100694

Korányi A. A survey of harmonic functions on symmetric spaces, Proc. Symposia Pure Math. XXV, part 1 (1979), 323 -344. (1979) | MR 0545272

Korányi A.; Taylor J.C. Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27.1 (1983), 77-93. (1983) | MR 0684542

Ranošová J. Sets of determination for parabolic functions on a half-space, Comment. Math. Univ. Carolinae 35 (1994), 497-513. (1994) | MR 1307276

Ranošová J. Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness, Comment. Math. Univ. Carolinae 37 (1996), 707-723. (1996) | MR 1440703 | Zbl 0887.35064

Rudin W. Functional analysis, McGraw-Hill Book Company (1973). (1973) | MR 0365062 | Zbl 0253.46001

Taylor J.C. An elementary proof of the theorem of Fatou-Naïm-Doob, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., vol.1, Amer. Math. Soc., Providence, R.I (1981), 153-163. (1981) | MR 0670103 | Zbl 0551.31004

Watson G.N. Theory of Bessel functions, 2nd ed., Cambridge Univ. Press Cambridge (1944). (1944) | MR 0010746 | Zbl 0063.08184