Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness
Ranošová, Jarmila
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 707-723 / Harvested from Czech Digital Mathematics Library

Let $T$ be a positive number or $+\infty$. We characterize all subsets $M$ of $\Bbb R^n \times ]0,T[ $ such that $$ \inf\limits_{X\in \Bbb R^n \times ]0,T[}u(X) = \inf\limits_{X\in M}u(X) \tag{i} $$ for every positive parabolic function $u$ on $\Bbb R^n \times ]0,T[$ in terms of coparabolic (minimal) thinness of the set $M_\delta =\cup_{(x,t)\in M} B^p((x,t),\delta t)$, where $\delta \in (0,1)$ and $B^p((x,t),r)$ is the ``heat ball'' with the ``center'' $(x,t)$ and radius $r$. Examples of different types of sets which can be used instead of ``heat balls'' are given. It is proved that (i) is equivalent to the condition $ \sup_{X\in \Bbb R^n \times \Bbb R^+}u(X) = \sup_{X\in M}u(X) $ for every bounded parabolic function on $\Bbb R^n \times \Bbb R^+$ and hence to all equivalent conditions given in the article [7]. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References.

Publié le : 1996-01-01
Classification:  31B10,  35B05,  35K05,  35K10,  35K15
@article{118880,
     author = {Jarmila Rano\v sov\'a},
     title = {Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {707-723},
     zbl = {0887.35064},
     mrnumber = {1440703},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118880}
}
Ranošová, Jarmila. Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 707-723. http://gdmltest.u-ga.fr/item/118880/

Aikawa H. Sets of determination for harmonic function in an NTA domains, J. Math. Soc. Japan, to appear. | MR 1376083

Bonsall F.F. Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 441-477. (1987) | MR 0908454 | Zbl 0658.31001

Brzezina M. On the base and the essential base in parabolic potential theory, Czechoslovak Math. J. 40 (115) (1990), 87-103. (1990) | MR 1032362 | Zbl 0712.31001

Doob J.L. Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag New York (1984). (1984) | MR 0731258 | Zbl 0549.31001

Gardiner S.J. Sets of determination for harmonic function, Trans. Amer. Math. Soc. 338.1 (1993), 233-243. (1993) | MR 1100694

Moser J. A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. XVII (1964), 101-134. (1964) | MR 0159139 | Zbl 0149.06902

Ranošová J. Sets of determination for parabolic functions on a half-space, Comment. Math. Univ. Carolinae 35 (1994), 497-513. (1994) | MR 1307276

Watson A.N. Thermal capacity, Proc. London Math. Soc. 37.3 (1987), 342-362. (1987) | MR 0507610