On the Convergence of Empiric Distribution Functions
Blum, J. R.
Ann. Math. Statist., Tome 26 (1955) no. 4, p. 527-529 / Harvested from Project Euclid
Let $\mu$ be a probability measure on the Borel sets of $k$-dimensional Euclidean space $E_k.$ Let ${X_n}, n = 1, 2, \cdots,$ be a sequence of $k$-dimensional independent random vectors, distributed according to $\mu.$ For each $n = 1, 2, \cdots$ let $\mu_n$ be the empiric distribution function corresponding to $X_1, \cdots, X_n,$ i.e., for every Borel set $A \epsilon E_k,$ we define $\mu_n(A)$ to be the proportion of observations among $X_1, \cdots, X_n$ which fall in $A.$ Let $\alpha$ be the class of Borel sets in $E_k$ defined below. The object of this paper is to prove that $P{\lim_{n\rightarrow\infty}} \sup_{A \epsilon \mathscr{a} \|\mu_n(A) - \mu(A)\| = 0} = 1.$
Publié le : 1955-09-14
Classification: 
@article{1177728499,
     author = {Blum, J. R.},
     title = {On the Convergence of Empiric Distribution Functions},
     journal = {Ann. Math. Statist.},
     volume = {26},
     number = {4},
     year = {1955},
     pages = { 527-529},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177728499}
}
Blum, J. R. On the Convergence of Empiric Distribution Functions. Ann. Math. Statist., Tome 26 (1955) no. 4, pp.  527-529. http://gdmltest.u-ga.fr/item/1177728499/