A Generalization of Dynkin's Identity and Some Applications
Athreya, Krishna B. ; Kurtz, Thomas G.
Ann. Probab., Tome 1 (1973) no. 5, p. 570-579 / Harvested from Project Euclid
Let $X(t)$ be a right continuous temporally homogeneous Markov process, $T_t$ the corresponding semigroup and $A$ the weak infinitesimal generator. Let $g(t)$ be absolutely continuous and $\tau$ a stopping time satisfying $$E_x(\int^\tau_0 |g(t)| dt) < \infty \text{and} E_x(\int^\tau_0|g'(t)| dt) < \infty$$. Then for $f \in \mathscr{D}(A)$ with $f(X(t))$ right continuous the identity $$E_xg(\tau)f(X(\tau)) - g(0)f(x) = E_x(\int^\tau_0 g'(s)f(X(s)) ds) + E_x(\int^\tau_0 g(s)Af(X(s)) ds)$$ is a simple generalization of Dynkin's identity $(g(t) \equiv 1)$. With further restrictions on $f$ and $\tau$ the following identity is obtained as a corollary: $$E_x(f(X(\tau))) = f(x) + \sum^{n-1}_{k=1} \frac{(-1)^{k-1}}{k!} E_x(\tau^k A^k f(X(\tau))) \\ + \frac{(-1)^{n-1}}{(n-1)!} E_x(\int^\tau_0 u^{n-1}A^nf(X(u)) du)$$ These identities are applied to processes with stationary independent increments to obtain a number of new and known results relating the moments of stopping times to the moments of the stopped processes.
Publié le : 1973-08-14
Classification:  6060,  6069,  Markov process,  stationary independent increments,  Dynkin's identity,  stopping time,  infinitesimal generator semigroup,  martingales
@article{1176996886,
     author = {Athreya, Krishna B. and Kurtz, Thomas G.},
     title = {A Generalization of Dynkin's Identity and Some Applications},
     journal = {Ann. Probab.},
     volume = {1},
     number = {5},
     year = {1973},
     pages = { 570-579},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996886}
}
Athreya, Krishna B.; Kurtz, Thomas G. A Generalization of Dynkin's Identity and Some Applications. Ann. Probab., Tome 1 (1973) no. 5, pp.  570-579. http://gdmltest.u-ga.fr/item/1176996886/