Rates of Convergence for Conditional Expectations
Zabell, Sandy L.
Ann. Probab., Tome 8 (1980) no. 6, p. 928-941 / Harvested from Project Euclid
Let $\{X_n: n \geqslant 1\}$ be a sequence of i.i.d. random variables with bounded continuous density or probability mass function $f(x)$. If $E(\exp(\alpha|X_1|^\beta)) < \infty$ for some $\alpha > 0$ and $0 < \beta \leqslant 1, \mu = L(X_1), c_n = o(n^{1/(2 - \beta)})$ and $h$ is a measurable function such that $M = E(|h(X_1)|\exp(\alpha|X_1|^\beta)) < \infty$, then $$E(h(X_1)|X_1 + \cdots + X_n = n\mu + c_n) = E(h(X_1)) + M\cdot O\big(\frac{1 + |c_n|}{n}\big)$$ uniformly in $h$. It follows that $$\|\mathscr{L} (X_1\mid X_1 + \cdots + X_n = n\mu + c_n) - \mathscr{L}(X_1)\|_{\operatorname{Var}} = O\big(\frac{1 + |c_n|}{n}\big).$$ Applications are given to the binomial-Poisson convergence theorem, spacings, and statistical mechanics.
Publié le : 1980-10-14
Classification:  Conditional expectations,  rates of convergence,  ratio limit theorem,  spacings,  binomial Poisson convergence,  equivalence of ensembles,  60F05
@article{1176994622,
     author = {Zabell, Sandy L.},
     title = {Rates of Convergence for Conditional Expectations},
     journal = {Ann. Probab.},
     volume = {8},
     number = {6},
     year = {1980},
     pages = { 928-941},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994622}
}
Zabell, Sandy L. Rates of Convergence for Conditional Expectations. Ann. Probab., Tome 8 (1980) no. 6, pp.  928-941. http://gdmltest.u-ga.fr/item/1176994622/