Limiting Behavior of a Process of Runs
Pittel, B. G.
Ann. Probab., Tome 9 (1981) no. 6, p. 119-129 / Harvested from Project Euclid
Let $X_1, X_2, \cdots$ be independent identically distributed (i.i.d.) random variables with a continuous distribution function. Let $R_0 = 0, R_k = \min \{j: j > R_{k - 1}$ and $X_j > X_{j + 1}\}$ and $T_k = R_k - R_{k - 1}, k \geq 1$. We prove that a process $T^{(n)} = \{T_{k + n}\}^\infty_{k = 1}$ converges, in the sense of distribution functions, exponentially fast to a strongly mixing ergodic process. It is shown that $(\max_{1 \leq k \leq n} T_k)/\log n(\log \log n)^{-1} \rightarrow 1$ almost surely and in $L_p, p > 0$. Also, the number of runs $T_k, 1 \leq k \leq n$, larger than or equal to some $m$ is proven to be Poisson distributed in the limit, if $n/m$! converges to a positive number.
Publié le : 1981-02-14
Classification:  Independent identically distributed random variables,  runs,  MacMahon formula,  ergodic process,  mixing property,  convergence to Poisson process,  the longest run distribution,  60C05,  05A15,  60F05
@article{1176994512,
     author = {Pittel, B. G.},
     title = {Limiting Behavior of a Process of Runs},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 119-129},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994512}
}
Pittel, B. G. Limiting Behavior of a Process of Runs. Ann. Probab., Tome 9 (1981) no. 6, pp.  119-129. http://gdmltest.u-ga.fr/item/1176994512/