Second-Order Approximation in the Conditional Central Limit Theorem
Landers, Dieter ; Rogge, Lothar
Ann. Probab., Tome 14 (1986) no. 4, p. 313-325 / Harvested from Project Euclid
Let $X_n, n \in \mathbb{N}$ be i.i.d. with mean 0 and variance 1. Let $B \in \sigma(X_n: n \in \mathbb{N})$ be a set such that its distances from the $\sigma$-fields $\sigma(X_1,\cdots, X_n)$ are of order $O(1/n(lg n)^{2 + \varepsilon})$ for some $\varepsilon > 0$. We prove that for those $B$ the conditional probabilities $P((1/\sqrt n)\sum^n_{i=1} X_i \leq t\mid B)$ can be approximated by a modified Edgeworth expansion up to order $O(1/n)$. An example shows that this is not true any more if the distances of $B$ from $\sigma(X_1,\cdots, X_n)$ are only of order $O(1/n(lg n)^2)$.
Publié le : 1986-01-14
Classification:  Conditional central limit theorem,  asymptotic expansion,  60F15,  60G50
@article{1176992630,
     author = {Landers, Dieter and Rogge, Lothar},
     title = {Second-Order Approximation in the Conditional Central Limit Theorem},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 313-325},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992630}
}
Landers, Dieter; Rogge, Lothar. Second-Order Approximation in the Conditional Central Limit Theorem. Ann. Probab., Tome 14 (1986) no. 4, pp.  313-325. http://gdmltest.u-ga.fr/item/1176992630/