A Note on Hypercontractivity of Stable Random Variables
Szulga, Jerzy
Ann. Probab., Tome 18 (1990) no. 4, p. 1746-1758 / Harvested from Project Euclid
It is shown that every symmetric $\alpha$-stable random variable $X, 0 < \alpha \leq 2$, has the property: For any $p$ and $q, 0 \leq h(\alpha) < q < p < \alpha$, there is a constant $s > 0$ such that $(E\|x + sXy\|^p)^{1/p} \leq (E\|x + Xy\|^q)^{1/q},$ for all $x$ and $y$ from a normed space. The quantity $h(\alpha)$ is identically 0 if $\alpha \leq 1$. It is strictly less than 1 for every $\alpha < 2$ which reveals the contrast to the Gaussian case in which $q > h(2) = 1$.
Publié le : 1990-10-14
Classification:  Hypercontraction,  stable random variables,  domain of normal attraction,  normed space,  60E07,  60B11,  60E15,  43A15,  42C05
@article{1176990645,
     author = {Szulga, Jerzy},
     title = {A Note on Hypercontractivity of Stable Random Variables},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1746-1758},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990645}
}
Szulga, Jerzy. A Note on Hypercontractivity of Stable Random Variables. Ann. Probab., Tome 18 (1990) no. 4, pp.  1746-1758. http://gdmltest.u-ga.fr/item/1176990645/