Geometrizing Rates of Convergence, II
Donoho, David L. ; Liu, Richard C.
Ann. Statist., Tome 19 (1991) no. 1, p. 633-667 / Harvested from Project Euclid
Consider estimating a functional $T(F)$ of an unknown distribution $F \in \mathbf{F}$ from data $X_1, \cdots, X_n$ i.i.d. $F$. Let $\omega(\varepsilon)$ denote the modulus of continuity of the functional $T$ over $\mathbf{F}$, computed with respect to Hellinger distance. For well-behaved loss functions $l(t)$, we show that $\inf_{T_n \sup_\mathbf{F}} E_Fl(T_n - T(F))$ is equivalent to $l(\omega(n^{-1/2}))$ to within constants, whenever $T$ is linear and $\mathbf{F}$ is convex. The same conclusion holds in three nonlinear cases: estimating the rate of decay of a density, estimating the mode and robust nonparametric regression. We study the difficulty of testing between the composite, infinite dimensional hypotheses $H_0: T(F) \leq t$ and $H_1: T(F) \geq t + \Delta$. Our results hold, in the cases studied, because the difficulty of the full infinite-dimensional composite testing problem is comparable to the difficulty of the hardest simple two-point testing subproblem.
Publié le : 1991-06-14
Classification:  Density estimation,  estimating the mode,  estimating the rate of tail decay,  robust nonparametric regression,  modulus of continuity,  Hellinger distance,  minimax tests,  monotone likelihood ratio,  62G20,  62G05,  62F35
@article{1176348114,
     author = {Donoho, David L. and Liu, Richard C.},
     title = {Geometrizing Rates of Convergence, II},
     journal = {Ann. Statist.},
     volume = {19},
     number = {1},
     year = {1991},
     pages = { 633-667},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348114}
}
Donoho, David L.; Liu, Richard C. Geometrizing Rates of Convergence, II. Ann. Statist., Tome 19 (1991) no. 1, pp.  633-667. http://gdmltest.u-ga.fr/item/1176348114/