Kelvin transform for Grushin operators and critical semilinear equations
Monti, Roberto ; Morbidelli, Daniele
Duke Math. J., Tome 131 (2006) no. 1, p. 167-202 / Harvested from Project Euclid
We study positive entire solutions $u = u(x,y)$ of the critical equation \begin{equation} \label{sceriffo} \Delta_x u+{(\alpha+1)^2}|x|^{2\alpha} \Delta_y u=-u^{({Q+2})/({Q-2})} \textrm{in}\mathbb{R}^{n}= \mathbb{R}^m\times\mathbb{R}^k, \end{equation} where $(x,y)\in \mathbb{R}^m\times \mathbb{R}^k$ , $\alpha>0$ , and $Q=m+k(\alpha+1)$ . In the first part of the article, exploiting the invariance of the equation with respect to a suitable conformal inversion, we prove a “spherical symmetry result for solutions”. In the second part, we show how to reduce the dimension of the problem using a hyperbolic symmetry argument. Given any positive solution $u$ of (1), after a suitable scaling and a translation in the variable $y$ , the function $v(x)= u(x,0)$ satisfies the equation \begin{equation} \label{pistolero} {\mathrm{div}\!_x}(p\nabla_xv )-q v=-p v^{({Q+2})/({Q-2})},|x|\lt 1,\end{equation} with a mixed boundary condition. Here, $p$ and $q$ are appropriate radial functions. In the last part, we prove that if $m=k=1$ , the solution of (2) is unique and that for $m\ge 3$ and $k=1$ , problem (2) has a unique solution in the class of $x$ -radial functions
Publié le : 2006-01-15
Classification:  35H20,  34B15
@article{1134666124,
     author = {Monti, Roberto and Morbidelli, Daniele},
     title = {Kelvin transform for Grushin operators and critical semilinear equations},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 167-202},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1134666124}
}
Monti, Roberto; Morbidelli, Daniele. Kelvin transform for Grushin operators and critical semilinear equations. Duke Math. J., Tome 131 (2006) no. 1, pp.  167-202. http://gdmltest.u-ga.fr/item/1134666124/