Gaps in √n mod 1 and ergodic theory
Elkies, Noam D. ; McMullen, Curtis T.
Duke Math. J., Tome 121 (2004) no. 1, p. 95-139 / Harvested from Project Euclid
Cut the unit circle $S^1=\mathbb{R}/\mathbb{Z}$ at the points \{\sqrt{1}\}}, \{\sqrt{2}\},\ldots,\{\sqrt{N}\}, where $\{x\} = x \bmod 1$, and let $J_1, \ldots, J_N$ denote the complementary intervals, or \emph{gaps}, that remain. We show that, in contrast to the case of random points (whose gaps are exponentially distributed), the lengths $|J_i|/N$ are governed by an explicit piecewise real-analytic distribution $F(t) \,dt$ with phase transitions at $t=1/2$ and $t=2$. ¶ The gap distribution is related to the probability $p(t)$ that a random unimodular lattice translate $\Lambda \subset \mathbb{R}^2$ meets a fixed triangle $S_t$ of area $t$; in fact, $p''(t) = -F(t)$. The proof uses ergodic theory on the universal elliptic curve ¶ \[ E = \big(\SL_2(\mathbb{R}) \ltimes \mathbb{R}^2\big)/ \big(\SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2\big) \] ¶ and Ratner's theorem on unipotent invariant measures.
Publié le : 2004-05-15
Classification:  11J71,  22E40,  37A17,  37A25
@article{1084479320,
     author = {Elkies, Noam D. and McMullen, Curtis T.},
     title = {Gaps in $\surd$n mod 1 and ergodic theory},
     journal = {Duke Math. J.},
     volume = {121},
     number = {1},
     year = {2004},
     pages = { 95-139},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1084479320}
}
Elkies, Noam D.; McMullen, Curtis T. Gaps in √n mod 1 and ergodic theory. Duke Math. J., Tome 121 (2004) no. 1, pp.  95-139. http://gdmltest.u-ga.fr/item/1084479320/