Some aspects of the homogeneous formalism in field theory and gauge invariance
Palese, Marcella ; Winterroth, Ekkehart
Archivum Mathematicum, Tome 042 (2006), p. 319-327 / Harvested from Czech Digital Mathematics Library

We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved.

Publié le : 2006-01-01
Classification:  53Cxx,  58Exx,  70G45,  70S05
@article{108038,
     author = {Marcella Palese and Ekkehart Winterroth},
     title = {Some aspects of the homogeneous formalism in field theory and gauge invariance},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {319-327},
     zbl = {1164.53332},
     mrnumber = {2322418},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108038}
}
Palese, Marcella; Winterroth, Ekkehart. Some aspects of the homogeneous formalism in field theory and gauge invariance. Archivum Mathematicum, Tome 042 (2006) pp. 319-327. http://gdmltest.u-ga.fr/item/108038/

Bureš J.; Vanžura J. Unified treatment of multisymplectic 3-forms in dimension 6, preprint arXiv:math.DG/0405101.

Cabras A.; Kolář I. Connections on some functional bundles, Czechoslovak Math. J. 45 (120) (1995), 529–548. (1995) | MR 1344519 | Zbl 0851.58007

Crnković C.; Witten E. Covariant description of canonical formalism in geometrical theories, Three hundred years of gravitation, Cambridge Univ. Press, Cambridge (1987), 676–684. (1987) | MR 0920461 | Zbl 0966.81533

Dedecker P. On the generalization of symplectic geometry to multiple integrals in the calculus of variations, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math. 570, Springer, Berlin, 1977, 395–456. (1975) | MR 0458478

De León M.; Marrero J. C.; Martin De Diego D. A new geometric setting for classical field theories, Classical and quantum integrability (Warsaw, 2001); Banach Center Publ. 59, Polish Acad. Sci., Warsaw, (2003), 189–209. | MR 2003724

Echeverria-Enriquez A.; De León M.; Munoz-Lecanda M. C.; Roman-Roy N. Hamiltonian systems in multisymplectic field theories, preprint arXiv:math-ph/0506003; | Zbl 1152.81420

Francaviglia M.; Palese M.; Winterroth E. A new geometric proposal for the Hamiltonian description of classical field theories, Proc. VIII Int. Conf. Differential Geom. Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 415–424. | MR 1978795 | Zbl 1109.70310

Francaviglia M.; Palese M.; Winterroth E. A general geometric setting for the energy of the gravitational field, Inst. Phys. Conf. Ser. 176, I. Ciufolini et al. eds., Taylor & Francis 2005, 391-395.

Giachetta G.; Mangiarotti L.; Sardanashvili G. New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997. (1997) | MR 2001723

Goldschmidt H.; Sternberg S. The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. (1973) | MR 0341531 | Zbl 0243.49011

Grabowska K.; Kijowski J. Canonical gravity and canonical energy, Proc. VIII Int. Conf. Differential Geometry and Appl. (Opava, Czech Republic August 27–31, 2001) O. Kowalski, D. Krupka and J. Slovak eds., 2001 Silesian University in Opava, 261–274. | MR 1978783

Hélein F.; Kouneiher J. Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl, Adv. Theor. Math. Phys. 8 (3) (2004), 565–601. | MR 2105190 | Zbl 1115.70017

Hélein F.; Kouneiher J. The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables, Adv. Theor. Math. Phys. 8 (4) (2004), 735–777. | MR 2141500 | Zbl 1113.70023

Kanatchikov I. V. Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys. 41 (1) (1998), 49–90. (1998) | MR 1617894 | Zbl 0947.70020

Kanatchikov I. V. Precanonical quantum gravity: quantization without the space-time decomposition, Internat. J. Theoret. Phys. 40 (6) (2001), 1121–1149. | MR 1834872 | Zbl 0984.83026

Kijowski J. A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), 99–128. (1973) | MR 0334772

Kijowski J. Multiphase spaces and gauge in the calculus of variations, Bull. Acad. Polon. Sciences, Math. Astr. Phys. XXII (12) (1974), 1219–1225. (1974) | MR 0370653 | Zbl 0302.49024

Kijowski J.; Szczyrba W. A canonical structure for classical field theories, Comm. Math. Phys. 46 (2) (1976), 183–206. (1976) | MR 0406247 | Zbl 0348.49017

Kijowski J.; Tulczyjew W. M. A symplectic framework for field theories, Lecture Notes in Phys. 107, Springer-Verlag, Berlin-New York, 1979. (1979) | MR 0549772 | Zbl 0439.58002

Kolář I. A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys. 1 (2) (1984), 127–137. (1984) | MR 0794983

Krupková O. Hamiltonian field theory, J. Geom. Phys. 43 (2002), 93–132. | Zbl 1016.37033

Mangiarotti L.; Sardanashvily G. Gauge Mechanics, World Scientific, Singapore, 1998. (1998) | MR 1689375

Mangiarotti L.; Sardanashvily G. Connections in classical and quantum field theory, World Scientific, Singapore, 2000. | MR 1764255 | Zbl 1053.53022

Panák M.; Vanžura J. 3-forms and almost complex structures on 6-dimensional manifolds, preprint arXiv:math.DG/0305312.

Rey A. M.; Roman-Roy N.; Salgado M. Gunther’s formalism $(k$-symplectic formalism$)$ in classical field theory: Skinner-Rusk approach and the evolution operator, J. Math. Phys. 46 (2005), 052901, 24pp. | MR 2143001

Rey A. M.; Roman-Roy N.; Salgado M. k-cosymplectic formalism in classical field theory: the Skinner–Rusk approach, preprint arXiv:math-ph/0602038.

Sardanashvily G. Generalized Hamiltonian formalism for field theory. Constraint systems, World Scientific, Singapore, 1995. (1995) | MR 1376141

Sardanashvily G. Hamiltonian time–dependent mechanics, J. Math. Phys. 39 (5) (1998), 2714–2729. (1998) | MR 1621455 | Zbl 1031.70508

Saunders D. J. The geometry of jet bundles, Cambridge University Press, Cambridge, 1989. (1989) | MR 0989588 | Zbl 0665.58002

Winterroth E. A $K$–theory for certain multisymplectic vector bundles, Proc. VIII Int. Conf. Differential Geometry and Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 153–162. | MR 1978772 | Zbl 1034.55001