The ring of arithmetical functions with unitary convolution: Divisorial and topological properties
Snellman, Jan
Archivum Mathematicum, Tome 040 (2004), p. 161-179 / Harvested from Czech Digital Mathematics Library

We study $(\mathcal {A},+,\oplus )$, the ring of arithmetical functions with unitary convolution, giving an isomorphism between $(\mathcal {A},+,\oplus )$ and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell-Everett [NumThe] between the ring $(\mathcal {A},+,\cdot )$ of arithmetical functions with Dirichlet convolution and the power series ring $ [\![x_1,x_2,x_3,\dots ]\!]$ on countably many variables. We topologize it with respect to a natural norm, and show that all ideals are quasi-finite. Some elementary results on factorization into atoms are obtained. We prove the existence of an abundance of non-associate regular non-units.

Publié le : 2004-01-01
Classification:  11A25,  13F25,  13J05
@article{107898,
     author = {Jan Snellman},
     title = {The ring of arithmetical functions with unitary convolution: Divisorial and topological properties},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {161-179},
     zbl = {1122.11004},
     mrnumber = {2068688},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107898}
}
Snellman, Jan. The ring of arithmetical functions with unitary convolution: Divisorial and topological properties. Archivum Mathematicum, Tome 040 (2004) pp. 161-179. http://gdmltest.u-ga.fr/item/107898/

Anderson D. D.; Valdes-Leon S. Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26(2) (1996), 439–480. (1996) | MR 1406490 | Zbl 0865.13001

Anderson D. D.; Valdes-Leon S. Factorization in commutative rings with zero divisors. II, In Factorization in integral domains (Iowa City, IA, 1996), Dekker, New York 1997, 197–219. (1996) | MR 1460773

Bosch S.; Güntzer U.; Remmert R. Non-Archimedean analysis, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. (1984) | MR 0746961 | Zbl 0539.14017

Cashwell E. D.; Everett C. J. The ring of number-theorethic functions, Pacific Journal of Mathematics 9 (1959), 975–985. (1959) | MR 0108510

Cohen E. Arithmetical functions associated with the unitary divisors of an integer, Math. Z. | MR 0112861 | Zbl 0094.02601

Huckaba; James A. Commutative rings with zero divisors, Marcel Dekker Inc., New York, 1988. (1988) | MR 0938741 | Zbl 0637.13001

Narkiewicz W. On a class of arithmetical convolutions, Colloq. Math. 10 (1963), 81–94. (1963) | MR 0159778 | Zbl 0114.26502

Schwab; Emil D.; Silberberg; Gheorghe A note on some discrete valuation rings of arithmetical functions, Arch. Math. (Brno) 36 (2000),103–109. | MR 1761615 | Zbl 1058.11007

Schwab; Emil D.; Silberberg; Gheorghe The valuated ring of the arithmetical functions as a power series ring, Arch. Math. (Brno) 37(1) (2001), 77–80. | MR 1822767 | Zbl 1090.13016

Sivaramakrishnan R. Classical theory of arithmetic functions, volume 126 of Pure and Applied Mathematics, Marcel Dekker, 1989. (1989) | MR 0980259 | Zbl 0657.10001

Vaidyanathaswamy R. The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc. 33(2) (1931), 579–662. (1931) | MR 1501607 | Zbl 0002.12402

Wilson; Richard M. The necessary conditions for $t$-designs are sufficient for something, Util. Math. 4 (1973), 207–215. (1973) | MR 0325415 | Zbl 0286.05005

Yocom K. L. Totally multiplicative functions in regular convolution rings, Canad. Math. Bull. 16 (1973), 119–128. (1973) | MR 0325502 | Zbl 0259.10002