Random fixed points of increasing compact random maps
Beg, Ismat
Archivum Mathematicum, Tome 037 (2001), p. 329-332 / Harvested from Czech Digital Mathematics Library

Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.

Publié le : 2001-01-01
Classification:  47H10,  47H40,  60H25
@article{107810,
     author = {Ismat Beg},
     title = {Random fixed points of increasing compact random maps},
     journal = {Archivum Mathematicum},
     volume = {037},
     year = {2001},
     pages = {329-332},
     zbl = {1068.47079},
     mrnumber = {1879455},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107810}
}
Beg, Ismat. Random fixed points of increasing compact random maps. Archivum Mathematicum, Tome 037 (2001) pp. 329-332. http://gdmltest.u-ga.fr/item/107810/

Beg I. Random fixed points of random operators satisfying semicontractivity conditions, Math. Japon. 46 (1) (1997), 151–155. (1997) | MR 1466128 | Zbl 0896.47053

Beg I.; Shahzad N. Some random approximation theorem with applications, Nonlinear Anal. 35 (1999), 609–616. (1999) | MR 1656922

Bharucha-Reid A. T. Random Integral Equations, Academic Press, New York , 1972. (1972) | MR 0443086 | Zbl 0327.60040

Bharucha-Reid A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641–657. (1976) | MR 0413273 | Zbl 0339.60061

Hans O. Reduzierende zulliällige transformaten, Czechoslovak Math. J. 7 (1957), 154–158. (1957) | MR 0090161

Hans O. Random operator equations, In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. (1961) | MR 0146665 | Zbl 0132.12402

Itoh S. Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261–273. (1979) | MR 0528687 | Zbl 0407.60069

Jameson G. Ordered Linear Spaces, Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. (1970) | MR 0438077 | Zbl 0196.13401

Lishan L. Some random approximations and random fixed point theorems for 1-set-contractive random operators, Proc. Amer. Math. Soc. 125 (1997), 515–521. (1997) | MR 1350953

Papageorgiou N. S. Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 507–514. (1986) | MR 0840638 | Zbl 0606.60058

Schaefer H. H. Topological Vector Spaces, Springer Verlag, New York, 1971. (1971) | MR 0342978 | Zbl 0217.16002

Sehgal V. M.; Waters C. Some random fixed point theorems, Contemporary Math. 21 (1983), 215–218. (1983) | MR 0729519 | Zbl 0541.47041

Špaček A. Zufällige gleichungen, Czechoslovak Math. J. 5 (1955), 462–466. (1955) | MR 0079854 | Zbl 0068.32701

Tan K. K.; Yuan X. Z. Random fixed point theorems and approximations, Stochastic Anal. Appl. 15 (1) (1997), 103–123. (1997) | MR 1429860

Zaanen A. C. Introduction to Operator Theory in Riesz Spaces, Springer Verlag, Berlin, 1997. (1997) | MR 1631533 | Zbl 0878.47022