Commutativity of associative rings through a Streb's classification
Ashraf, Mohammad
Archivum Mathematicum, Tome 033 (1997), p. 315-321 / Harvested from Czech Digital Mathematics Library

Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$ there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties.

Publié le : 1997-01-01
Classification:  16U70,  16U80
@article{107620,
     author = {Mohammad Ashraf},
     title = {Commutativity of associative rings through a Streb's classification},
     journal = {Archivum Mathematicum},
     volume = {033},
     year = {1997},
     pages = {315-321},
     zbl = {0913.16017},
     mrnumber = {1601337},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107620}
}
Ashraf, Mohammad. Commutativity of associative rings through a Streb's classification. Archivum Mathematicum, Tome 033 (1997) pp. 315-321. http://gdmltest.u-ga.fr/item/107620/

Abujabal H. A. S.; Ashraf M. Some commutativity theorems through a Streb’s classification, Note Mat. 14, No.1 (1994) (to appear). (1994) | MR 1442008 | Zbl 0879.16019

Ashraf M. On commutativity of one sided s-unital rings with some polynomial constraints, Indian J. Pure and Appl. Math. 25 (1994), 963-967. (1994) | MR 1294065 | Zbl 0814.16030

Bell H. E.; Quadri M. A.; Khan M. A. Two commutativity theorems for rings, Rad. Mat. 3 (1994), 255-260. (1994) | MR 0931981

Bell H. E.; Quadri M. A.; Ashraf M. Commutativity of rings with some commutator constraints, Rad. Mat. 5 (1989), 223-230. (1989) | MR 1050891 | Zbl 0697.16031

Chacron M. A commutativity theorem for rings, Proc. Amer. Math. Soc., 59 (1976), 211-216. (1976) | MR 0414636 | Zbl 0341.16020

Herstein I. N. Two remakrs on commutativity of rings, Canad. J. Math. 7 (1955), 411-412. (1955) | MR 0071405

Hirano Y.; Kobayashi Y.; Tominaga H. Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13. (1982) | MR 0660049 | Zbl 0487.16023

Jacobson N. Structure theory of algebraic algebras of bounded degree, Ann. Math. 46 (1945), 695-707. (1945) | MR 0014083

Komatsu H.; Tominaga H. Chacron’s conditions and commutativity theorems, Math. J. Okayama Univ. 31 (1989), 101-120. (1989) | MR 1043353

Komatsu H.; Tominaga H. Some commutativity theorems for left s-unital rings, Resultate Math. 15 (1989), 335-342. (1989) | MR 0997069 | Zbl 0678.16027

Komatsu H.; Tominaga H. Some commutativity conditions for rings with unity, Resultate Math. 19 (1991), 83-88. (1991) | MR 1091958 | Zbl 0776.16017

Komatsu H.; Nishinaka T.; Tominaga H. On commutativity of rings, Rad. Math. 6 (1990), 303-311. (1990) | MR 1096712 | Zbl 0718.16031

Putcha M. S.; Yaqub A. Rings satisfying polynomial constraints, J. Math. Soc., Japan 25 (1973), 115-124. (1973) | MR 0313312 | Zbl 0242.16017

Quadri M. A.; Ashraf M.; Khan M. A. A commutativity condition for semiprime ring-II, Bull. Austral. Math. Soc. 33 (1986), 71-73. (1986) | MR 0823854

Quadri M. A.; Ashraf M. Commutativity of generalized Boolean rings, Publ. Math. (Debrecen) 35 (1988), 73-75. (1988) | MR 0971954 | Zbl 0657.16020

Quadri M. A.; Khan M. A.; Asma Ali A commutativity theorem for rings with unity, Soochow J. Math. 15 (1989), 217-227. (1989) | MR 1045165

Searcoid M. O.; Machale D. Two elementary generalizations for Boolean rings, Amer. Math. Monthly 93 (1986), 121-122. (1986) | MR 0827587

Streb W. Zur struktur nichtkommutativer Ringe, Math. J. Okayama Univ. 31 (1989), 135-140. (1989) | MR 1043356 | Zbl 0702.16022

Tominaga H.; Yaqub A. Commutativity theorems for rings with constraints involving a commutative subset, Resultate Math. 11 (1987), 186-192. (1987) | MR 0880201