The existence of fixed points for the $\cdot/GI/1$ queue
Mairesse, Jean ; Prabhakar, Balaji
Ann. Probab., Tome 31 (2003) no. 1, p. 2216-2236 / Harvested from Project Euclid
A celebrated theorem of Burke's asserts that the Poisson process is a fixed point for a stable exponential single server queue; that is, when the arrival process is Poisson, the equilibrium departure process is Poisson of the same rate. This paper considers the following question: Do fixed points exist for queues which dispense i.i.d. services of finite mean, but otherwise of arbitrary distribution (i.e., the so-called $\cdot/\mathit{GI}/1/\infty/\mathit{FCFS}$ queues)? We show that if the service time $S$ is nonconstant and satisfies \mbox{$\int\!\! P\{S \geq u\}^{1/2}\,du <\infty$}, then there is an unbounded set $\fF\subset(E[S],\infty)$ such that for each $\alpha\in\fF$ there exists a unique ergodic fixed point with mean inter-arrival time equal to $\alpha$. We conjecture that in fact $\fF=(E[S],\infty)$.
Publié le : 2003-10-14
Classification:  Queue,  tandem queueing networks,  general independent services,  stability,  Loynes theorem,  Burke theorem,  60K25,  60K35,  68M20,  90B15,  90B22
@article{1068646383,
     author = {Mairesse, Jean and Prabhakar, Balaji},
     title = {The existence of fixed points for the $\cdot/GI/1$ queue},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 2216-2236},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1068646383}
}
Mairesse, Jean; Prabhakar, Balaji. The existence of fixed points for the $\cdot/GI/1$ queue. Ann. Probab., Tome 31 (2003) no. 1, pp.  2216-2236. http://gdmltest.u-ga.fr/item/1068646383/