Maximizing product concentration in a diabatic multistage reactor
Saleh, Manal Moftah ; Nelson, Mark
ANZIAM Journal, Tome 56 (2016), / Harvested from Australian Mathematical Society

We develop a mathematical model describing the operation of autothermal processes. Autothermal reactors provide considerable thermal efficiency over conventional reactors. The reaction mechanism investigated is \(A\rightarrow B \rightarrow C\), where the reactions occur in a two reactor cascade. Specific features of coupled endothermic and exothermic reactions are taken into account. Particular considerations are presented and discussed for different catalysts to obtain 90% conversion into product. References O. Bilous and N. R. Amundson. Chemical reactor stability and sensitivity. AIChE J. 1(4):513–521, 1955. doi:10.1002/aic.690010422. G. Dangelmayr and I. Stewart. Sequential bifurcations in continuous stirred tank chemical reactors coupled in series. SIAM J. Appl. Math. 45(6):895–918, 1985. doi:10.1137/0145054. N. Devia and W. L. Luyben. Reactors: size versus stability. Hydrocarbon Process. 57(6):119–122, 1978. https://www.researchgate.net/publication/280895391_Reactors_Size_versus_Stability L. F. Razon and R. A. Schmitz. Multiplicities and instabilities in chemically reacting systems –- a review. Chem. Eng. Sci. 42(5):1005–1047, 1987. doi:10.1016/0009-2509(87)80055-6. P. Gray and S. K. Scott. Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. Oxford University Press, 1990. https://global.oup.com/academic/product/chemical-oscillations-and-instabilities-9780198558644?cc=au&lang=en& G. Kolios, J. Frauhammer, and G. Eigenberger. Efficient reactor concepts for coupling of endothermic and exothermic reactions. Chem. Eng. Sci. 57:1505–1510, 2002. doi:10.1016/S0009-2509(02)00022-2. W. L. Luyben. Processing Modelling, Simulation and Control for Chemical Engineering. http://dl.acm.org/citation.cfm?id=542227 McGraw-Hill, New York, 1973. B. Lindstrom, J. A. J. Karlsson, P. Ekdunge, L. De Verdier, B. Haggendal, J. Dawody, M. Nilsson, and L. J. Pettersson. Diesel fuel reformer for automotive fuel cell applications. Int. J. Hydrogen Energ. 34:3367–3381, 2009. doi:10.1016/j.ijhydene.2009.02.013. L. Ma, C. Jiang, A. A. Adesina, D. L. Trimm, and M. S. Wainwright. Simulation studies of autothermal reactor system for H\(_2\) production from methanol steam reforming. Chem. Eng. J. 62:103–111, 1996. doi:10.1016/0923-0467(95)03058-1. M. Nelson, G. Wake, and X. Chen. Heterogeneously catalysed combustion in a continuously stirred tank reactor–- low-temperature reactions. Combust. Theor. and Model. 4(1):1–27, 2000. doi:10.1088/1364-7830/4/1/301. K. Opoku-Gyamfi and A. A. Adesina. Kinetic studies of CH\(_4\) oxidation over Pt-NiO/\(\delta \)-Al\(_2\)O\(_3\) in a fluidised bed reactor. Appl. Catal. A: Gen., 180:113–122, 1999. doi:10.1016/S0926-860X(98)00340-8.

Publié le : 2016-01-01
DOI : https://doi.org/10.21914/anziamj.v57i0.10387
@article{10387,
     title = {Maximizing product concentration in a diabatic multistage reactor},
     journal = {ANZIAM Journal},
     volume = {56},
     year = {2016},
     doi = {10.21914/anziamj.v57i0.10387},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/10387}
}
Saleh, Manal Moftah; Nelson, Mark. Maximizing product concentration in a diabatic multistage reactor. ANZIAM Journal, Tome 56 (2016) . doi : 10.21914/anziamj.v57i0.10387. http://gdmltest.u-ga.fr/item/10387/