We prove sharp embeddings of Besov spaces Bp,r σ,α with the classical smoothness σ and a logarithmic smoothness α into Lorentz-Zygmund spaces. Our results extend those with α = 0, which have been proved by D. E. Edmunds and H. Triebel. On page 88 of their paper (Math. Nachr. 207 (1999), 79-92) they have written: ?Nevertheless a direct proof, avoiding the machinery of function spaces, would be desirable.? In our paper we give such a proof even in a more general context. We cover both the sub-limiting and the limiting cases and we determine growth envelopes of Besov spaces with logarithmic smoothness.
@article{urn:eudml:doc:44545, title = {Sharp embeddings of Besov spaces with logarithmic smoothness.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {18}, year = {2005}, pages = {81-110}, zbl = {1083.46018}, mrnumber = {MR2135533}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44545} }
Gurka, Petr; Opic, Bohumir. Sharp embeddings of Besov spaces with logarithmic smoothness.. Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005) pp. 81-110. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44545/