Sharp embeddings of Besov spaces with logarithmic smoothness.
Gurka, Petr ; Opic, Bohumir
Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005), p. 81-110 / Harvested from Biblioteca Digital de Matemáticas

We prove sharp embeddings of Besov spaces Bp,r σ,α with the classical smoothness σ and a logarithmic smoothness α into Lorentz-Zygmund spaces. Our results extend those with α = 0, which have been proved by D. E. Edmunds and H. Triebel. On page 88 of their paper (Math. Nachr. 207 (1999), 79-92) they have written: ?Nevertheless a direct proof, avoiding the machinery of function spaces, would be desirable.? In our paper we give such a proof even in a more general context. We cover both the sub-limiting and the limiting cases and we determine growth envelopes of Besov spaces with logarithmic smoothness.

Publié le : 2005-01-01
DMLE-ID : 994
@article{urn:eudml:doc:44545,
     title = {Sharp embeddings of Besov spaces with logarithmic smoothness.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {18},
     year = {2005},
     pages = {81-110},
     zbl = {1083.46018},
     mrnumber = {MR2135533},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44545}
}
Gurka, Petr; Opic, Bohumir. Sharp embeddings of Besov spaces with logarithmic smoothness.. Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005) pp. 81-110. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44545/