This is a survey on the history of and the solutions to the basic global problems on Nash functions, which have been only recently solved, namely: separation, extension, global equations, Artin-Mazur description and idempotency, also noetherianness. We discuss all of them in the various possible contexts, from manifolds over the reals to real spectra of arbitrary commutative rings.
@article{urn:eudml:doc:44533, title = {Global problems on Nash functions.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {17}, year = {2004}, pages = {83-115}, zbl = {1056.14081}, mrnumber = {MR2063943}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44533} }
Coste, Michel; Ruiz, Jesús M.; Shiota, Masahiro. Global problems on Nash functions.. Revista Matemática de la Universidad Complutense de Madrid, Tome 17 (2004) pp. 83-115. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44533/