We consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) = g(x,u) + f, where the principal term is a Leray-Lions operator defined on W0 1,p (Ω). The function g(x,u) satisfies suitable growth assumptions, but no sign hypothesis on it is assumed. We prove that the rearrangement of u can be estimated by the solution of a problem whose data are radially symmetric.
@article{urn:eudml:doc:44527, title = {A symmetrization result for nonlinear elliptic equations.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {17}, year = {2004}, pages = {261-276}, zbl = {1097.35049}, mrnumber = {MR2083955}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44527} }
Ferone, Vincenzo; Messano, Basilio. A symmetrization result for nonlinear elliptic equations.. Revista Matemática de la Universidad Complutense de Madrid, Tome 17 (2004) pp. 261-276. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44527/