In this paper we study the existence of solutions for quasilinear degenerated elliptic operators A(u) + g(x,u,∇u) = f, where A is a Leray-Lions operator from W0 1,p(Ω,ω) into its dual, while g(x,s,ξ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s, but it satisfies a sign condition on s. The right hand side f is assumed to belong either to W-1,p'(Ω,ω*) or to L1(Ω).
@article{urn:eudml:doc:44523, title = {Existence results for quasilinear degenerated equations via strong convergence of truncations.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {17}, year = {2004}, pages = {359-379}, zbl = {1161.35411}, mrnumber = {MR2083959}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44523} }
Akdim, Youssef; Azroul, Elhoussine; Benkirane, Abdelmoujib. Existence results for quasilinear degenerated equations via strong convergence of truncations.. Revista Matemática de la Universidad Complutense de Madrid, Tome 17 (2004) pp. 359-379. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44523/