In this paper we consider the following question: Let S be a semialgebraic subset of a real algebraic set V, and let φ: S → Z be a function on S. Is φ the restriction of an algebraically constructible function on V, i.e. a sum of signs of polynomials on V? We give an effective method to answer this question when φ(S) ⊂ {-1,1} or dim S ≤ 2 or S is basic.
@article{urn:eudml:doc:44522, title = {Prolongements en fonctions alg\'ebriquement constructibles.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {17}, year = {2004}, pages = {471-483}, zbl = {1060.14082}, mrnumber = {MR2083966}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44522} }
Bonnard-Doré, Isabelle. Prolongements en fonctions algébriquement constructibles.. Revista Matemática de la Universidad Complutense de Madrid, Tome 17 (2004) pp. 471-483. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44522/