We show that the functions in L2(Rn) given by the sum of infinitely sparse wavelet expansions are regular, i.e. belong to C∞ L2 (x0), for all x0 ∈ Rn which is outside of a set of vanishing Hausdorff dimension.
@article{urn:eudml:doc:44515, title = {On the L2-pointwise regularity of functions in critical Besov spaces.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {17}, year = {2004}, pages = {403-409}, zbl = {1062.46027}, mrnumber = {MR2083962}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44515} }
Moussa, Mohamed. On the L2-pointwise regularity of functions in critical Besov spaces.. Revista Matemática de la Universidad Complutense de Madrid, Tome 17 (2004) pp. 403-409. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44515/