This paper deals with the problem of finding positive solutions to the equation -∆[u] = g(x,u) on a bounded domain 'Omega' with Dirichlet boundary conditions. The function g can change sign and has asymptotically linear behaviour. The solutions are found using the Mountain Pass Theorem.
@article{urn:eudml:doc:44510,
title = {A Dirichlet problem with asymptotically linear and changing sign nonlinearity.},
journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
volume = {16},
year = {2003},
pages = {465-481},
zbl = {1086.35048},
mrnumber = {MR2032928},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44510}
}
Lucia, Marcello; Magrone, Paola; Zhou, Huan-Song. A Dirichlet problem with asymptotically linear and changing sign nonlinearity.. Revista Matemática de la Universidad Complutense de Madrid, Tome 16 (2003) pp. 465-481. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44510/