This paper deals with the problem of finding positive solutions to the equation -∆[u] = g(x,u) on a bounded domain 'Omega' with Dirichlet boundary conditions. The function g can change sign and has asymptotically linear behaviour. The solutions are found using the Mountain Pass Theorem.
@article{urn:eudml:doc:44510, title = {A Dirichlet problem with asymptotically linear and changing sign nonlinearity.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {16}, year = {2003}, pages = {465-481}, zbl = {1086.35048}, mrnumber = {MR2032928}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44510} }
Lucia, Marcello; Magrone, Paola; Zhou, Huan-Song. A Dirichlet problem with asymptotically linear and changing sign nonlinearity.. Revista Matemática de la Universidad Complutense de Madrid, Tome 16 (2003) pp. 465-481. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44510/