This article is devoted to the study of a flame ball model, derived by G. Joulin, which satisfies a singular integro-differential equation. We prove that, when radiative heat losses are too important, the flame always quenches; when heat losses are smaller, it stabilizes or quenches, depending on an energy input parameter. We also examine the asymptotics of the radius for these different regimes.
@article{urn:eudml:doc:44497, title = {Long-time dynamics of an integro-differential equation describing the evolution of a spherical flame.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {16}, year = {2003}, pages = {207-232}, zbl = {1060.35020}, mrnumber = {MR2031882}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44497} }
Rouzaud, Hélène. Long-time dynamics of an integro-differential equation describing the evolution of a spherical flame.. Revista Matemática de la Universidad Complutense de Madrid, Tome 16 (2003) pp. 207-232. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44497/