We obtain that the power maps are equicontinuous at zero in any Baire locally convex algebra with a continuous product in which all entire functions operate; whence is m-convex in the commutative case. As a consequence, we get the same result of Mityagin, Rolewicz and Zelazko for commutative B0-algebras.
@article{urn:eudml:doc:44487, title = {Entire functions and equicontinuity of power maps in Baire algebras.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {13}, year = {2000}, pages = {337-340}, mrnumber = {MR1822117}, zbl = {0976.46032}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44487} }
El Kinani, Abdellah. Entire functions and equicontinuity of power maps in Baire algebras.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 337-340. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44487/