We obtain that the power maps are equicontinuous at zero in any Baire locally convex algebra with a continuous product in which all entire functions operate; whence is m-convex in the commutative case. As a consequence, we get the same result of Mityagin, Rolewicz and Zelazko for commutative B0-algebras.
@article{urn:eudml:doc:44487,
title = {Entire functions and equicontinuity of power maps in Baire algebras.},
journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
volume = {13},
year = {2000},
pages = {337-340},
mrnumber = {MR1822117},
zbl = {0976.46032},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44487}
}
El Kinani, Abdellah. Entire functions and equicontinuity of power maps in Baire algebras.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 337-340. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44487/