Riesz basis generation, eigenvalues distribution, and exponential stability for a Euler-Bernoulli beam with joint feedback control.
Guo, Bao-Zhu ; Chan, K. Y.
Revista Matemática de la Universidad Complutense de Madrid, Tome 14 (2001), p. 205-229 / Harvested from Biblioteca Digital de Matemáticas

Using an abstract result on Riesz basis generation for discrete operators in general Hilbert spaces, we show, in this article, that the generalized eigenfunctions of an Euler-Bernoulli beam equation with joint linear feedback control form a Riesz basis for the state space. The spectrum-determined growth condition is hence obtained. Meanwhile, the exponential stability as well as the asymptotic expansion of eigenvalues are also readily obtained by a straightforward computation.

Publié le : 2001-01-01
DMLE-ID : 926
@article{urn:eudml:doc:44470,
     title = {Riesz basis generation, eigenvalues distribution, and exponential stability for a Euler-Bernoulli beam with joint feedback control.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {14},
     year = {2001},
     pages = {205-229},
     zbl = {0985.35054},
     mrnumber = {MR1851729},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44470}
}
Guo, Bao-Zhu; Chan, K. Y. Riesz basis generation, eigenvalues distribution, and exponential stability for a Euler-Bernoulli beam with joint feedback control.. Revista Matemática de la Universidad Complutense de Madrid, Tome 14 (2001) pp. 205-229. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44470/