The exact internal controllability of the radial solutions of a semilinear heat equation in R3 is proved. The result applies for nonlinearities that are of an order smaller than |s| logp |s| at infinity for 1 ≤ p < 2. The method of the proof combines HUM and a fixed point technique.
@article{urn:eudml:doc:44466, title = {Exact controllability of the radial solutions of the semilinear wave equation in R3.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {11}, year = {1998}, pages = {221-245}, zbl = {0918.93004}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44466} }
Teresa, Luz de. Exact controllability of the radial solutions of the semilinear wave equation in R3.. Revista Matemática de la Universidad Complutense de Madrid, Tome 11 (1998) pp. 221-245. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44466/