We characterize free poset algebras F(P) over partially ordered sets and show that they can be represented by upper semi-lattice algebras. Hence, the uniqueness, in decomposition into normal form, using symmetric difference, of non-zero elements of F(P) is established. Moreover, a characterization of upper semi-lattice algebras that are isomorphic to free poset algebras is given in terms of a selected set of generators of B(T).
@article{urn:eudml:doc:44446, title = {Tail and free poset algebras.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {17}, year = {2004}, pages = {169-179}, zbl = {1050.06004}, mrnumber = {MR2063947}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44446} }
Bekkali, Mohamed; Zhani, Driss. Tail and free poset algebras.. Revista Matemática de la Universidad Complutense de Madrid, Tome 17 (2004) pp. 169-179. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44446/