Let H be a group of conformal automorphisms of a closed Riemann surface S, isomorphic to either of the alternating groups A4 or A5 or the symmetric groups S4 or S5. We provide necessary and sufficient conditions for the existence of a Schottky uniformization of S for which H lifts. In particular, togheter with the previous works in Hidalgo (1994,1999), we exhaust the list of finite groups of Möbius transformations of Schottky type.
@article{urn:eudml:doc:44430, title = {A4, A5, S4 and S5 of Schottky type.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {15}, year = {2002}, pages = {11-29}, zbl = {1011.30033}, mrnumber = {MR1915213}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44430} }
Hidalgo, Rubén A. A4, A5, S4 and S5 of Schottky type.. Revista Matemática de la Universidad Complutense de Madrid, Tome 15 (2002) pp. 11-29. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44430/