We prove the following common generalization of Maurey's extension theorem and Vogt's (DN)-(Omega) splitting theorem for Fréchet spaces: if T is an operator from a subspace E of a Fréchet space G of type 2 to a Fréchet space F of dual type 2, then T extends to a map from G into F'' whenever G/E satisfies (DN) and F satisfies (Omega).
@article{urn:eudml:doc:44415, title = {Extension and splitting theorems for Fr\'echet spaces of type 2.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {12}, year = {1999}, pages = {325-337}, zbl = {0962.46005}, mrnumber = {MR1740463}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44415} }
Defant, A.; Domanski, P.; Mastylo, M. Extension and splitting theorems for Fréchet spaces of type 2.. Revista Matemática de la Universidad Complutense de Madrid, Tome 12 (1999) pp. 325-337. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44415/