A new method of analysing the linear complexity of 2nd-order nonlinear filterings of m-sequences that is based on the concept of regular coset is present. The procedure considers any value of the LFSR's length, L, (prime or composite number). Emphasis is on the geometric interpretation of the regular cosets which produce degeneracies in the linear complexity of the filtered sequence. Numerical expressions to compute the linear complexity of such sequences are given as well as practical rules to design 2nd-order nonlinear filtering which preserve the maximal linear complexity are stated.
@article{urn:eudml:doc:44381, title = {Sobre el par\'ametro complejidad lineal y los filtros no lineales de segundo orden.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {13}, year = {2000}, pages = {119-134}, zbl = {1053.94009}, mrnumber = {MR1794906}, language = {es}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44381} }
Fúster Sabater, Amparo; García Villalba, Luis J. Sobre el parámetro complejidad lineal y los filtros no lineales de segundo orden.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 119-134. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44381/