We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces Fs p,q(Rn), for 0 < s < 1 and 1 < p, q < ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on Fs p,q(Rn), for 0 < s < 1 and 1 < p, q < ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H1 p(Rn).
@article{urn:eudml:doc:44373, title = {Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {15}, year = {2002}, pages = {401-416}, zbl = {1033.42013}, mrnumber = {MR1951818}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44373} }
Korry, Soulaymane. Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.. Revista Matemática de la Universidad Complutense de Madrid, Tome 15 (2002) pp. 401-416. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44373/