Geometric genera for ample vector bundles with regular sections.
Lanteri, Antonio
Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000), p. 33-48 / Harvested from Biblioteca Digital de Matemáticas

Let X be a smooth complex projective variety of dimension n ≥ 3. A notion of geometric genus pg(X,E) for ample vector bundles E of rank r < n on X admitting some regular sections is introduced. The following inequality holds: pg(X,E) ≥ hn-r,0(X). The question of characterizing equality is discussed and the answer is given for E decomposable of corank 2. Some conjectures suggested by the result are formulated.

Publié le : 2000-01-01
DMLE-ID : 833
@article{urn:eudml:doc:44367,
     title = {Geometric genera for ample vector bundles with regular sections.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {13},
     year = {2000},
     pages = {33-48},
     zbl = {0993.14003},
     mrnumber = {MR1794902},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44367}
}
Lanteri, Antonio. Geometric genera for ample vector bundles with regular sections.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 33-48. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44367/