Seven elliptic curves of the form y2 = x3 + B x and having rank at least 8 are presented. To find them we use the double descent method of Tate. In particular we prove that the curve with B = 14752493461692 has rank exactly 8.
@article{urn:eudml:doc:44365, title = {High rank eliptic curves of the form y2 = x3 + Bx.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {13}, year = {2000}, pages = {17-31}, zbl = {0974.11026}, mrnumber = {MR1794901}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44365} }
Aguirre, Julián; Castañeda, Fernando; Peral, Juan Carlos. High rank eliptic curves of the form y2 = x3 + Bx.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 17-31. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44365/