High rank eliptic curves of the form y2 = x3 + Bx.
Aguirre, Julián ; Castañeda, Fernando ; Peral, Juan Carlos
Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000), p. 17-31 / Harvested from Biblioteca Digital de Matemáticas

Seven elliptic curves of the form y2 = x3 + B x and having rank at least 8 are presented. To find them we use the double descent method of Tate. In particular we prove that the curve with B = 14752493461692 has rank exactly 8.

Publié le : 2000-01-01
DMLE-ID : 831
@article{urn:eudml:doc:44365,
     title = {High rank eliptic curves of the form y2 = x3 + Bx.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {13},
     year = {2000},
     pages = {17-31},
     zbl = {0974.11026},
     mrnumber = {MR1794901},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44365}
}
Aguirre, Julián; Castañeda, Fernando; Peral, Juan Carlos. High rank eliptic curves of the form y2 = x3 + Bx.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 17-31. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44365/